Unlocking the quantum Internet from space

ScientificTalk

Singapore in race for secure communication through network of tiny satellites

Anuar Chert and Alexander Ling

For The Straits Times

Satellites are Singapore’s technological colossus. A tiny satellite with a suite of quantum hardware, including entangled photons, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.

In 2018, China launched its first quantum satellite, Micius, forming a quantum network with two ground receptors in the Sichuan province. Micius is expected to take part in a Chinese quantum network. The newly developed quantum technologies, based on quantum entanglement, can do much more than simply move more bits on silicon chips and multiply the clock speed of microprocessors. They can support all kinds of computations with qualitatively new algorithms and new forms of secure communication beyond quantum principles.

The newly developed quantum technologies, based on quantum entanglement, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.

The newly developed quantum technologies, based on quantum entanglement, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.

The newly developed quantum technologies, based on quantum entanglement, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.

The newly developed quantum technologies, based on quantum entanglement, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.

The newly developed quantum technologies, based on quantum entanglement, can do much more than just view and make more bits on silicon chips and multiply the clock speed of microprocessors. Its potential is untrammelled, for kinds of communications with qualitative new algorithms and new forms of secure communication beyond quantum principles.